当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InnoDB 会将这些更新操作缓存在 change buffer 中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
需要说明的是,虽然名字叫作 change buffer,实际上它是可以持久化的数据。也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘上。
将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge。除了访问这个数据页会触发 merge 外,系统有后台线程会定期 merge。在数据库正常关闭(shutdown)的过程中,也会执行 merge 操作。
显然,如果能够将更新操作先记录在 change buffer,减少读磁盘,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够避免占用内存,提高内存利用率。
那么,什么条件下可以使用 change buffer 呢?
对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入 (4,400) 这个记录,就要先判断现在表中是否已经存在 k=4 的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用 change buffer 了。
同理,唯一索引的更新就不能使用 change buffer,实际上也只有普通索引可以使用。change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size 来动态设置。这个参数设置为 50 的时候,表示 change buffer 的大小最多只能占用 buffer pool 的 50%。
change buffer 和 redo log
现在,我们要在表上执行这个插入语句:
mysql> insert into t(id,k) values(id1,k1),(id2,k2);
这里,我们假设当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。如图所示是带 change buffer 的更新状态图。
它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。
这条更新语句做了如下的操作(按照图中的数字顺序):
- Page 1 在内存中,直接更新内存;
- Page 2 没有在内存中,就在内存的 change buffer 区域,记录下“我要往 Page 2 插入一行”这个信息
- 将上述两个动作记入 redo log 中(图中 3 和 4)。
做完上面这些,事务就可以完成了。所以,你会看到,执行这条更新语句的成本很低,就是写了两处内存,然后写了一处磁盘(两次操作合在一起写了一次磁盘),而且还是顺序写的。
同时,图中的两个虚线箭头,是后台操作,不影响更新的响应时间。
那在这之后的读请求,要怎么处理呢?比如,我们现在要执行 select * from t where k in (k1, k2)
。这里,两个读请求的流程图。
如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)和 redo log(ib_log_fileX)无关了。所以,图中就没画出这两部分。
- 读 Page 1 的时候,直接从内存返回。
- 要读 Page 2 的时候,需要把 Page 2 从磁盘读入内存中,然后应用 change buffer 里面的操作日志,生成一个正确的版本并返回结果。
可以看到,直到需要读 Page 2 的时候,这个数据页才会被读入内存。所以,如果要简单地对比这两个机制在提升更新性能上的收益的话,redo log 主要节省的是随机写磁盘的 IO 消耗(转成顺序写),而 change buffer 主要节省的则是随机读磁盘的 IO 消耗。